报告题目:Ergodicity, mixing, limit theorems for quasi-periodically forced 2D stochastic NS Equations
报 告 人:吕克宁 教授(四川大学)
报告时间:2024年3月5日(星期二)下午16:00-17:00
报告地点:星空体育官方网站205
报告摘要: We consider the incompressible 2D Navier-Stokes equations on the torus driven by a deterministic time quasi-periodic force and a noise that is white in time and extremely degenerate in Fourier space. We show that the asymptotic statistical behavior is characterized by a uniquely ergodic and exponentially mixing quasi-periodic invariant measure. The result is true for any value of the viscosity $\nu>0$. By utilizing this quasi-periodic invariant measure, we show the strong law of large numbers and central limit theorem for the continuous time inhomogeneous solution processes. Estimates of the corresponding rate of convergence are also obtained, which is the same as in the time homogeneous case for the strong law of large numbers, while the convergence rate in the central limit theorem depends on the Diophantine approximation property on the quasi-periodic frequency and the mixing rate of the quasi-periodic invariant measure. We also prove the existence of a stable quasi-periodic solution in the laminar case (when the viscosity is large). This talk is based on a joint work with Liu Rongchang.
专家简介:吕克宁教授是微分方程与无穷维动力系统专家,曾任Brigham Young University和Michigan State University教授,现任四川大学教授、数学学院学术院长、中国数学会副理事长, 2005年获得国家杰出青年科学基金(B类),2010年入选国家海外高层次人才计划、2017年获首届“张芷芬数学奖”,2020年入选AMS fellow,先后主持国家自然科学基金重点项目(2014-2018)和国家自然科学基金重大项目(2021-2025)等,现任国际学术刊物《Journal of Differential Equations》共同主编,在不变流形和不变叶层、Sinai-Ruelle-Bowen测度、熵和Lyapunov指数以及随机动力系统的光滑共轭理论和偏微分方程的动力学等方面做出了多个原创性工作,相关论文发表在《Inventiones Mathematicae》、《Communications on Pure and Applied Mathematics》、《Memoirs of the American Mathematical Society》、《Archive for Rational Mechanics and Analysis》、《Advances in Mathematics》等学术期刊上.
地址:成都市锦江区静安路5号 (邮编:610068) 学院党政办邮箱:SXYdzb@sicnu.edu.cn 学院教学办邮箱:SXYjxb@sicnu.edu.cn 学院学工办邮箱:SXYxgb@sicnu.edu.cn © All Right Reserved . 星空体育官方网站 版权所有 (四川师范大学网信处制作维护) 蜀ICP备05026983号 信息管理 |