报告题目:Proof of Delfino-VIti conjecture
报 告 人: 吴保君 博士后(北京大学)
报告时间:2024年3月7日(星期四)上午10:00-11:00
报告地点:数学院205室
报告摘要:In the context of random cluster models, the connectivity functions denoted as $P_n(x_1, x_2, ..., x_n)$ signify the probabilities associated with n points belonging to the same finite cluster. The initial conjecture by Delfino and Viti proposed that, at the critical point in the continuum limit, the ratio $R = P_3(x_1, x_2, x_3) / \sqrt{P_2(x_1, x_2) P_2(x_2, x_3) P_3(x_1, x_3)}$ converges to a universal constant solely dependent on $\kappa$. This dependence can be expressed through the imaginary DOZZ formula. For percolation, this constant approximates to 1.022. In this presentation, we elucidate the proof specifically for the percolation scenario. Additionally, we introduce analogous quantities within the conformal loop ensembles carpet/gasket measure, demonstrating their precise alignment with the imaginary DOZZ formula. The discussion will also delve into the statistical physics origin and its connections to conformal field theory.
This is based on the joint work with Morris Ang (Columbia), Gefei Cai (BICMR), and Xin Sun (BICMR).
专家简介:吴保君,本科毕业于山东大学泰山学堂和巴黎十一大,硕士毕业于巴黎高等师范学院,博士毕业于法国艾克斯-马赛大学,师从波利亚奖得住Remi Rhodes, 从事概率与共形场论和弦论相关的研究。特别是,Segal公理以及Liouville共形场理论的bootstrap方法的研究。Liouville共形场理论与许多经典的二维随机对象有着紧密联系,例如量子引力、Schramm-Loewner演化曲线、随机平面图等。同时,吴博士也对Liouville量子引力、矩阵模型以及双曲几何之间的关系感兴趣。
地址:成都市锦江区静安路5号 (邮编:610068) 学院党政办邮箱:SXYdzb@sicnu.edu.cn 学院教学办邮箱:SXYjxb@sicnu.edu.cn 学院学工办邮箱:SXYxgb@sicnu.edu.cn © All Right Reserved . 星空体育官方网站 版权所有 (四川师范大学网信处制作维护) 蜀ICP备05026983号 信息管理 |